
NAG C Library Function Document

nag_dsycon (f07mgc)

1 Purpose

nag_dsycon (f07mgc) estimates the condition number of a real symmetric indefinite matrix A, where A has
been factorized by nag_dsytrf (f07mdc).

2 Specification

void nag_dsycon (Nag_OrderType order, Nag_UploType uplo, Integer n,
const double a[], Integer pda, const Integer ipiv[], double anorm,
double *rcond, NagError *fail)

3 Description

nag_dsycon (f07mgc) estimates the condition number (in the 1-norm) of a real symmetric indefinite matrix
A:

�1ðAÞ ¼ kAk1kA
�1k1:

Since A is symmetric, �1ðAÞ ¼ �1ðAÞ ¼ kAk1kA�1k1.

Because �1ðAÞ is infinite if A is singular, the function actually returns an estimate of the reciprocal of
�1ðAÞ.
The function should be preceded by a call to nag_dsy_norm (f16rcc) to compute kAk1 and a call to

nag_dsytrf (f07mdc) to compute the Bunch–Kaufman factorization of A. The function then uses Higham’s

implementation of Hager’s method (see Higham (1988)) to estimate kA�1k1.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates how A has been factorized as follows:

if uplo ¼ Nag Upper, A ¼ PUDUTPT , where U is upper triangular;

if uplo ¼ Nag Lower, A ¼ PLDLTPT , where L is lower triangular.

Constraint: uplo ¼ Nag Upper or Nag Lower.

f07 – Linear Equations (LAPACK) f07mgc

[NP3645/7] f07mgc.1

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

4: a½dim� – const double Input

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
On entry: details of the factorization of A, as returned by nag_dsytrf (f07mdc).

5: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array a.

Constraint: pda � maxð1; nÞ.

6: ipiv½dim� – const Integer Input

Note: the dimension, dim, of the array ipiv must be at least maxð1; nÞ.
On entry: details of the interchanges and the block structure of D, as returned by nag_dsytrf
(f07mdc).

7: anorm – double Input

On entry: the 1-norm of the original matrix A, which may be computed by calling nag_dsy_norm
(f16rcc). anorm must be computed either before calling nag_dsytrf (f07mdc) or else from a copy
of the original matrix A.

Constraint: anorm � 0:0.

8: rcond – double * Output

On exit: an estimate of the reciprocal of the condition number of A. rcond is set to zero if exact
singularity is detected or the estimate underflows. If rcond is less than machine precision, A is
singular to working precision.

9: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_REAL

On entry, anorm = hvaluei.
Constraint: anorm � 0:0.

f07mgc NAG C Library Manual

f07mgc.2 [NP3645/7]

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed estimate rcond is never less than the true value �, and in practice is nearly always less than
10�, although examples can be constructed where rcond is much larger.

8 Further Comments

A call to nag_dsycon (f07mgc) involves solving a number of systems of linear equations of the form

Ax ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately 2n2

floating-point operations but takes considerably longer than a call to nag_dsytrs (f07mec) with 1 right-hand
side, because extra care is taken to avoid overflow when A is approximately singular.

The complex analogues of this function are nag_zhecon (f07muc) for Hermitian matrices and nag_zsycon
(f07nuc) for symmetric matrices.

9 Example

To estimate the condition number in the 1-norm (or infinity-norm) of the matrix A, where

A ¼

2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06

�1:15 0:63 2:06 �1:81

1
CCA

0
BB@ :

Here A is symmetric indefinite and must first be factorized by nag_dsytrf (f07mdc). The true condition
number in the 1-norm is 75.68.

9.1 Program Text

/* nag_dsycon (f07mgc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf16.h>
#include <nagx02.h>

int main(void)
{

/* Scalars */
double anorm, rcond;
Integer i, j, n, pda;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;

f07 – Linear Equations (LAPACK) f07mgc

[NP3645/7] f07mgc.3

/* Arrays */
char uplo[2];
Integer *ipiv=0;
double *a=0;
Nag_UploType uplo_enum;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07mgc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
pda = n;

#else
pda = n;

#endif

/* Allocate memory */
if (!(ipiv = NAG_ALLOC(n, Integer)) ||

!(a = NAG_ALLOC(n * n, double)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo);
if (*(unsigned char *)uplo == ’L’)

uplo_enum = Nag_Lower;
else if (*(unsigned char *)uplo == ’U’)

uplo_enum = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}

if (uplo_enum == Nag_Upper)
{

for (i = 1; i <= n; ++i)
{

for (j = i; j <= n; ++j)
Vscanf("%lf", &A(i,j));

}
Vscanf("%*[^\n] ");

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

Vscanf("%lf", &A(i,j));
}

Vscanf("%*[^\n] ");
}

/* Compute norm of A */
f16rcc(order, Nag_OneNorm, uplo_enum, n, a, pda, &anorm, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f16rcc.\n%s\n", fail.message);

f07mgc NAG C Library Manual

f07mgc.4 [NP3645/7]

exit_status = 1;
goto END;

}
/* Factorize A */
f07mdc(order, uplo_enum, n, a, pda, ipiv, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07mdc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Estimate condition number */
f07mgc(order, uplo_enum, n, a, pda, ipiv, anorm, &rcond,

&fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07mgc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

if (rcond >= X02AJC)
Vprintf("Estimate of condition number = %10.2e\n", 1.0/rcond);

else
Vprintf("A is singular to working precision\n");

END:
if (ipiv) NAG_FREE(ipiv);
if (a) NAG_FREE(a);
return exit_status;

}

9.2 Program Data

f07mgc Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A

9.3 Program Results

f07mgc Example Program Results

Estimate of condition number = 7.57e+01

f07 – Linear Equations (LAPACK) f07mgc

[NP3645/7] f07mgc.5 (last)

	f07mgc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	a
	pda
	ipiv
	anorm
	rcond
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_REAL
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

